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The propagation of steady-state shock waves and the nonsteady formation of a relaxation 
zone in the interaction of a wave with an aerosol cloud was analyzed in [i]. The same topic 
was addressed in the bibliography of this study within the framework of a continuum (C) 
model of heterogeneous media [2]. These investigations used general simplifying assumptions: 
motion is unidimensional; the carrier gas is ideal, while its viscosity and thermal conduc- 
tivity are manifest only in interaction with particles having infinite thermal conductivity; 
the suspended particles are spheres of a single diameter. 

The assumption of one-velocity motion of the disperse particles which is the basis of 
the C-model of heterogeneous media and the model's lack of a mechanism to prevent two par- 
ticles from occupying the same point in space lead to several results which are physically 
incorrect. Among these results are the following: the formation of "sheet"-type surfaces 
of discontinuity in the particle pseudo-gas [3, 4] and "overlapping" of the cloud of occlu- 
sions [5], which are characterized by an unlimited increase in the volume fraction of par- 
ticles in a certain cross section of the two-phase flow. 

Under actual conditions, disperse particles have distributions of velocity and dimen- 
sions, which must lead to their collision. The transfer of momentum due to the random motion 
of the occlusions determines the pressure in the pseudo-gas of solid particles. 

Allowing for this pressure in the equations of the aerosol C-model solves the problem 
of their nonhyperbolicity and the instability of the solutions against small perturbations, 
and overlapping and sheet discontinuities such as mentioned above become impossible. The 
random motion of the particles also leads to additional heat release due to interphase fric- 
tion, while collisions between particles of different sizes results in a redistribution of 
the kinetic energy associated with their translational motion. However, it is not possible 
to determine the pressure in a pseudo-gas within the framework of the C-model. 

The authors of [6-9] attempted to allow for collisions between particles of different 
diameters. Thus, in [6], the example of particles of two kinds was used to propose a simple 
method which reduces to introduction of the effective force acting between two clouds of 
particles. However, the results obtained in [6] are limited by the assumptions made - spe- 
cifically, by the assumption that the expected time between two successive collisions be- 
tween particles is greater than the relaxation time associated with the translational de- 
grees of freedom. This assumption obviously imposes a serious limitation on the mass frac- 
tion of the disperse particles. 

The authors of [7, 8] described the evolution of polydisperse particles by introducing 
a distribution function for the velocity of particles of the i-th species. However, the 
collision integral obtained in these studies in the case of quasi-one-dimensional motion 
does not satisfy the law of conservation of the total number of particles. 

The system of equations obtained in [9] to describe the dynamics of a pseudo-gas of 
solid particles with allowance for inelastic collisions contains the assumption that the 
effect of the carrier gas on the motion of the solid particles is negligibly small and the 
occlusion velocities conform to a Maxwell distribution. 

Here, we use the results in [10-12] to propose a continuum-kinetic (CK) model of aero- 
sols, and we studythe interaction of a shock wave with an aerosol cloud of finite length. 

i. Continuum-Kinetic Model of Aerosols. In the CK-model, the carrier gas is regarded 
as a continuum, while the evolution of disperse solid particles of the i-th species is de- 
scribed by introducing a velocity distribution function fi(t, r, vi) whose change is deter- 
mined by the equation [ii, 12] 
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L 

Di/i : + vi X -~r + Gi X ~ /i = Jig -k ~ Jij. ( i. i ) 
j=l 

Here, L is the number of fractions into which the continuous particle-size distribution is 
subdivided; Ji" is the collision operator corresponding to the interaction between particles 
of the i-th an~ j-th species (the Boltzmann form of this operator is valid for elastic and 
smooth spherical particles); Jig is the collision operator corresponding to interaction of 

C particles of the i-th spe ies and the carrier gas, for which the following diffusion approxi- 
mation is valid: 

Jig = ov~ X X (/iK0 -- Fi/i ? 

Ki and F i are the tensor of the diffusion coefficients in the velocity space and the acceler- 
ation of the i-th particle. 

Referring all of the quantities in (i.i) to their characteristic values, we obtain the 
above equation in dimensionless form 

L 

eiDi/ i  ~ [JiJig + ~_j Jij ,  

where the parameters e i and 8i determine the order of the collision operators Jij and Jig 
and are equal to 

~ U G O 

Pi Ui Ui" 

H ere ,  h i ,  9 i ,  and U i a r e  c h a r a c t e r i s t i c  v a l u e s  o f  t h e  mean f r e e  p a t h ,  t h e  d e n s i t y  o f  t h e  
p s e u d o - g a s ,  and t h e  v e l o c i t y  o f  p a r t i c l e s  o f  t h e  i - t h  s p e c i e s ;  S, Go, O, and U a r e  c h a r a c -  
t e r i s t i c  values of length, relative velocity between phases, and the density and velocity 
of the carrier gas. 

Relaxation processes in the action of a shock wave on an aerosol cloud are characterized 
by the fact that the parameters e i and 8i change within the ranges: e+ ~ ei 5 i, e_ 5 8i 5 
i/e (e+ and e_ ~ i). This variation is attributable to the appreciable disequilibrium 
between the phases with respect to translational degrees of freedom during the initial stage 
of acceleration and to the reduction in the mean free path of the particles as the cloud 
is compressed. 

In connection with this, the Chapman-Enskog method is not applicable over the entire 
flow region, and it is necessary to use numerical methods to solve Eq. (i.i). Since it is 
currently not possible to numerically solve the exact kinetic equation, it was proposed in 
[I0] that the BGK-model of this equation be used. 

In describing the interaction of shock waves with an aerosol cloud of finite length, 
we will limit ourselves to the assumptions commonly made for this class of problems. Spe- 
cifically, we will assume that the motion is unidimensional, the carrier gas is ideal, and 
its viscosity and thermal conductivity are manifest only in an interaction with particles 
having infinite thermal conductivity. 

Since there is a preferred direction in the problems being examined here, we assume 
that the velocity components perpendicular to this direction conform to a Maxwell distribu- 
tion; if we first average the kinetic equation over these components, we obtain the system 
of equations of the CK-model: 

a_! a 
ot + --~ (pu) = O; ( 1 . 2 )  

5 

Opu 0 ~.~,g'gi; (1.3) ot ~ ~ (p  + pu2) = - -  

OE 0 
0--? + ~ {u (p + E)} 

L 

---- ~ (Qis- qgi); (I .4) 
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OEi 0 
o-7 + ~ (uiEi) - -  qgi; ( 1 . 5 )  

#/i 0 0 /i - - / i o  
0"--~ q- ~ (Viii) q- ~ (Fgl/i) "=" "~i ( l .  6 ) 

with the condition of normalization of the distribution functions and relations to determine 
macroscopic parameters of particles of the i-th species 

( 1.  7 ) 

H e r e  

Fgi -= (Rd~/8Mi) p (u - -  vi)[ u - -  vi [ CD; :~"gi --~ NiM, < Fgi > = 

q~i =2n)~d i (T  - -  @i)N~Nu; ]io -= (N~/]/r-~)a:/~ exp { - - a ( u i  - -  v0~}; 

L 
a: i /C2<c~>)=Ni] (2  S ]icidvi); " q : N i  ~ (~ir S S ]i/'[vi--v'ldvidv~; 

13, u, p, E, X, T are  the  d e n s i t y ,  v e l o c i t y ,  p r e s s u r e ,  t o t a l  energy per  u n i t  volume, the rma l  
c o n d u c t i v i t y ,  and t empera tu re  o f  t he  gas; v i ,  c i ,  N i ,  M i ,  d i ,  ~ i ,  ~  O i  a re  p r o j e c t i o n s  
of velocity and the velocity of random motion on the x axis, concentration, mass, diameter, 
transit time, collision cross section, and surface temperature of particles of the i-th spe- 
cies. 

System (1.2)-(1.7) is augmented by the equations of state 

p = p~ E = 0 .5p~ ~" q- p/(y -- t ) ,  

p o = p  ~ , P i = ~ i P  ~ E i ~ p l  c,id@, 
@o 

where Rg and y are the specific gas constant and the adiabatic exponent of the carrier gas; 
0 Ei, ~i, Pi , Csi are the internal energy, volume fraction, density, and heat capacity of 

particles of the i-th species. 

The relations in [13] were used to calculate the drag coefficient C D and Nusselt num- 
ber Nu, which enter into the expressions which determine momentum and energy transfer be- 
tween the particles and the carrier gas. 

2. Boundary and Initial Conditions. Numerical Method. It is assumed that at the ini- 
tial moment of time the shock wave, being a surface of discontinuity, is located at the boun- 
dary between the pure gas and aerosol and at subsequent moments of time propagates from left 
to right. The parameters of the gas phase on each side of the shock wave are connected by 
the Rankine-Hugoniot relations. 

At the initial moment of time, an aerosol cloud of the length S is located to the right 
of a shock 'wave in an undisturbed gas under conditions of dynamic and thermal equilibrium. 
Particle velocity conforms to a Maxwell distribution, with arms random velocity on the order 
of i m/sec. 

To numerically solve the above problem within the framework of the C- and CK-models, 
we used a conservative monotonic through-counting scheme based on the MacCormack finite dif- 
ference operator. This is a scheme of the "predictor-corrector" type, and monotonicity is 
achieved by introducing nonlinear local smoothing without disturbing the conservatism of 
the difference scheme [14]. The boundary between the pure gas and the aerosol is localized 
in a manner similar to [15]. The details of the numerical method are discussed in [I0]. 

3. Results of Calculations. To explain characteristic features of the C- and CK-models, 
we will first examine a simpler case: the interaction of a shock wave with a monodisperse 
aerosol cloud. The results of calculations show that for small volume and mass fractions 
(~ < 10-4, '~m = PD/P < 0.25), the disperse particles do not have a significant effect on 
the parameters of-the carrier gas, the frequency of collisions, or the velocity associated 
with the random particle motion. The results of the two models nearly coincide. 

An increase in the volume fraction or concentration of particles is accompanied by an 
increase in the frequency of particle collisions and the mean random velocity. Also, in 
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this case, processes considered only in the CK-model begin to affect the character of relaxa- 
tion behind the wave front. 

Thus, Fig. i shows the distribution of the density of an aerosol cloud along the axis 
at the moments of time t = 3t0, 6t0 (to is the time of passage of the shock wave through 
the cloud) with the initial volume ~ = 10 -3 and mass ~m = 2.5 fractions of particles of 
quartz sand with the diameter 6.10 -5 m and a Mach number of the incoming shock wave equal 
to two. Here and below, where necessary, a solid line is used to show values of the vari- 
ables at the initial moment of time calculated within the framework of the CK-model, while 
a dashed line is used to show the same in the C-model. All of the variables in the figures 
are referred to their characteristic values: S - length of the cloud; u 2 - velocity of the 
wake in the pure gas; S/u2, u22/Rg - characteristic values of time and temperature, respec- 
tively. It follows from Fig. 1 that in the CK-model, the stage of initial compression Of 
the particle cloud due to velocity disequilibrium between the phases is replaced by an ex- 
pansion stage due to the energy of random motion. The C-model shows continuing compression 
of the cloud. 

The nonmonotonic character of the temperature distribution of the carrier gas (Fig. 
2) is explained by the presence of two competing processes: interphase friction, leading 
to heat release; convective heat transfer, causing heating of the particles as a result of 
heat absorbed from the carrier phase. The maximum of gas temperature is higher in the CK- 
model because the random motion of the particles leads to additional release of heat as a 
result of interphase friction. By the moment of time t = 6t0, thermal equilibrium has near- 
ly been achieved between the phases. The temperature of the particle surface turns out to 
be 20-30% higher in the CK-model than in the C-model. 
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Figure 2; illustrates the nonmonotonic character of the velocity distribution of the 
carrier gas (lines i) at t = 6t0, which is attributable to the retarding effect of the cloud 
of occlusions and acceleration of the gas due to the heat released from interphase friction. 

We should point out the different sign of the gradient of mean particle velocity in 
the CK- and C-models (lines 2 and 3). This is related to the diffusion of faster-moving 
particles to the right edge of the cloud as seen in the CK-model. 

The effect of polydispersity on the character of relaxation processes behind the wave 
front can be followed by using the example of a two-fraction particle cloud. Figures 4-6 
show results for the case when M = 4.2. The particles, of magnesium oxide, have diameters 
of 4.10 -5 and 10 -4 . 

The distributions of aerosol cloud density shown in Fig. 4 for the moments of time t = 
0, 3t 0, and 6t 0 illustrate that, over time, a cloud which is initially uniformly mixed 
separates into two parts under the influence of the force field created by the velocity dis- 
equilibrium between the phases. "Overlapping" of the cloud of occlusions is seen in the 
C-model at t h 3t0, and it becomes impossible to perform calculations for subsequent moments 
of time. 

The rapid equalization of the mean velocity of lightweight particles (Fig. 5) in the 
CK-model is connected with the slowing of occlusions located near the left edge of the cloud 
as a result of their collisions with slow-moving heavier particles. 

Figure 6 shows the dependence of the temperature of the carrier gas and the disperse 
particles on the longitudinal coordinate. The results for t = 6t 0 are shown. The tempera- 
ture of the fine particles turns out to be lower than the temperature of the coarser par- 
ticles. This result is valid only for the case when smaller-diameter particles are merely 
a small addition to the coarser particles. 

Analysis of the completed calculations shows that overlapping of the cloud of occlusions 
does not occur for M = 2-4.5 with a particle diameter >i0 -4 m. In connection with this, 
we can establish the limit of applicability of the C-model for the given class of problems: 
small volume and mass fractions (~ < i0 -4, ~m < 0.25, when the effect of the disperse phase 
on the carrier gas is negligible) of occlusions with a diameter greater than i0 -4 m. 

We thank A. I. Zhmakin, Yu. P. Lun'kin, V. F. Mymrin, and A. A. Shmidt for their assis- 
tance and useful discussion of the results. 
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TWO-PHASE BOUNDARY LAYER WITH AN INCOMPRESSIBLE CARRIER PHASE 

ON A PLATE, WITH INJECTION AND SUCTION OF GAS FROM THE SURFACE 

A. M. Grishin and V. I. Zabarin UDC 532.529 

Two-phase flows in a boundary layer around bodies of different shapes were examined 
theoretically in [i-3]. Equations of a two-phase boundary layer were obtained in [I] in 
four characteristic cases on the basis of asymptotic analysis of the system of equations 
of two-phase flow at high Reynolds numbers. The structure of a boundary layer with an in- 
compressible carrier phase on the impermeable, stationary surface of a plate was studied 
in [2]. The investigation [3] examined the effect of the boundary layer on particle trajec- 
tory in the flow of an incompressible gas about a sphere in the "single-particle" regime. 

Here, we numerically study flow in a two-phase boundary layer about a plate with injec- 
tion and suction of gas from the surface. An asymptotic analysis of the initial equations 
of motion of the two-phase medium at high Reynolds numbers produces the boundary condition 
for the transverse component of particle velocity on the external boundary of the boundary 
layer. 

It was found that the presence of gas suction eliminates the high-particle-density layer 
in the boundary layer and leads to restructuring of the qualitative flow pattern. An addi- 
tion is made to the friction coefficient due to particle flow on the surface. With injec- 
tion of gas from the surface, a layer of pure gas is formed near the surface, while a sur- 
face of parameter discontinuity - a sheet - is formed inside the boundary layer. 

i. Formulation of the Problem. Written below are the equations of laminar motion of 
a two-phase mixture in a boundary layer near a flat plate parallel to the incoming flow. 
We assume that the volume fraction of the chemically inert spherical particles is small, 
the process is isothermal, there is a small difference between the local characteristics 
and the mean-volume characteristics, the physical density of the particles is much greater 
than the density of the carrier phase, Brownian motion of the particles is insignificant, 
and the Mach numbers are small. The equations of motion in this case have the form [i ]: 

Ou av aPsus OPsVs 
o-V + ~-y = o, -T~ +--~-y = o, ( 1 . 1 )  

Ou Ou 02u cD (it -- us), 
u-~z + v-~g = og- ~ - -  p~ %0--- 6 

Ovs Ovs c D Ou.+ Or+.+ c+V (U - -  U+), Us + Vs = - -  (V - -  V,+). 

Here, x = x'/L, y = y'/(LRe z/2) are dimensionless coordinates (the x axis is directed along 
the plate, while the y axis is directed normal to the plate; u = u'/u=, v = v'/(u=Re I/2) 
are dimensionless components of velocity in the x and y directions, respectively; c = Ts/ 
(L/u~) is the Stokes number, characterizing the intensity of viscous interaction of the 
phases; T s = @s~ is the characteristic relaxation time of particle velocity; V is the 
viscosity coefficient of the carrier phase; ps ~ is the physical density of the particles; 
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